PRECISE AND COMPACT.

SERVOMAX® ELASTOMER COUPLINGS

SERIES EK | 2 – 25,000 Nm

THE ULTIMATE COUPLING FROM 2 - 25,000 $\,\rm Nm$

www.rw-america.com

BACKLASH FREE ELASTOMER COUPLINGS

MODELS

APPLICATION EXAMPLES

with clamping hub, from 0.5 - 2,200 Nm

- short compact design
- Iow inertia
- easy assembly

EK2

with clamping hub from 6 - 2,200 Nm

- very smooth running
- balanced type
- easy assembly

see page 6

with split clamping hubs from 4 - 25,000 Nm

- easy assembly
- lateral mounting with split clamping hubs
- very quick and easy installation

EK6

with conical clamping ring from 4 - 25,000 Nm

- very smooth running
- high clamping forces
- mounts axially
- no access holes for screw tightening necessary

SERVOMAX®

MODELS

PROPERTIES

APPLICATION EXAMPLES

optional

BACKLASH FREE ELASTOMER COUPLINGS

MODELS

ES2

PROPERTIES

APPLICATION EXAMPLES

adjustable length line shaft from 16 - 1,200 Nm

- with split clamping hubs
- adjustable length and rotational orientation
- radial mounting due to split hubs
- no pillow block bearing necessary
- lengths up to 4 meters

- reliable torque overload protection
- backlash free due to patented R+W design
- easy to mount

see page 18/19/20

ESL

"economy class" torque limiter from 1 - 150 Nm

- economical design
- compact
- ratcheting multi position design

for explosive atmospheres

- available for the full product range
- for use in hazardous zones 1/21 and 2/22, R+W SERVOMAX EEx couplings are registered according to the ATEX 95a directive

SERVOMAX®

Areas of application:

- servo drives
- machine tools
- packaging machinery
- plant automation
- printing machinery
- industrial robots
- measurement and positioning units
- general mechanical engineering
- linking screw jacks, linear actuators, encoders

Function

The equalizing element of EK couplings is the elastomer insert. It transmits torque without backlash or vibration. The elastomer insert defines the characteristics of the entire drive system.

The coupling is backlash free due to a pretension of the elastomer insert between the two coupling halves. SERVOMAX couplings compensate for lateral, angular and axial misalignment.

Specifications of the elastomer inserts

Туре	Shore hardness	Color	Material	Relative damping (ψ)	Temperature range	Features
А	98 Sh A	red	TPU	0.4 - 0.5	-30°C to +100°C	high damping
В	64 Sh D	green	TPU	0.3 - 0.45	-30°C to +120°C	high torsional stiffness
С	80 Sh A	yellow	TPU	0.3 - 0.4	-30°C to +100°C	very high damping
D*	65 Sh D	black	TPU	0.3 - 0.45	-10°C to + 70°C	electrically conductive*

* The electrically conductive properties of the insert allow for a continuation of the path to ground, preventing electrostatic loading of the coupling, and potential for sparks in explosive areas. Technical data is available.

The values of the relative damping were determined at 10 Hz and +20°C.

Properties of the product range:

- vibration damping
- electrically isolating (standard version)
- backlash free
- press fit design
- compensation for lateral, angular and axial misalignment

Misalignments:

Series 2500 - 9500

coupling assembly includes 5 individual elastomer segments

Shore hardness 98 Sh A

Shore hardness 65 Sh D

Series 2-800

Shore hardness 98 Sh A

Shore hardness 64 Sh D

C

Shore hardness 80 Sh A

Model series EK								Ser	ies								
IVIOUEI SELIES EK	2	2					10			20			60			150	
Type (Elastomer insert)	A E	B C	А	В	С	А	В	С	А	В	С	А	В	С	А	В	С
Static torsional stiffness (Nm/rad) C _T	50 11	15 17	150	350	53	260	600	90	1140	2500	520	3290	9750	1400	4970	10600	2000
Dynamic torsional stiffness (Nm/rad) C _{Tdyn}	100 23	30 35	300	700	106	541	1650	224	2540	4440	876	7940	11900	2072	13400	29300	3590
Lateral 🗄 🗐 🕴 (mm)	0.08 0.0	06 0.2	0.08	0.06	0.2	0.1	0.08	0.22	0.1	0.08	0.25	0.12	0.1	0.25	0.15	0.12	0.3
Angular R) (degree) Max. values	1 0.	.8 1.2	1	0.8	1.2	1	0.8	1.2	1	0.8	1.2	1	0.8	1.2	1	0.8	1.2
Axial (mm)	±	1		±1			±1			±2			±2			±2	

Madal carias FK							Series							
Model series EK	300			450			800		25	00	45	00	95	00
Type (Elastomer insert)	A B	С	А	В	С	А	В	С	А	В	А	В	А	В
Static torsional stiffness (Nm/rad) C _T	12400 18000	3000	15100	27000	4120	41300	66080	10320	87600	109000	167000	372000	590000	670000
Dynamic torsional stiffness (Nm/rad) C _{Tdyn}	23700 40400	6090	55400	81200	11600	82600	180150	28600	175000	216000	337000	743000	1180000	1340000
Lateral 🗄 🔠 🚦 (mm)	0.18 0.14	0.35	0.2	0.18	0.35	0.25	0.2	0.4	0.5	0.3	0.5	0.3	0.6	0.4
Angular R) (degree) Max.	1 0.8	1.2	1	0.8	1.2	1	0.8	1.2	1.5	1	1.5	1	1.5	1
Axial (mm)	±2			±2			±2		±	3	±	4	±	:5

Static torsional stiffness at 50% T_{KN} www.rw-america.com Dynamic torsional stiffness at T_{KN} 1 Nm = 8.85 in lbs

R+W 5

MODEL **EKL**

BACKLASH FREE ELASTOMER COUPLINGS

Compact version with clamping hub

Properties:

- short compact design
- easy assembly
- vibration dampingelectrically isolating
- electrically isolatif
 backlash free
- Dackidshillee
- press fit design

Material:

Clamping hub: up to series 450 high strength aluminum, from series 800 and up steel Elastomer insert: precision molded, wear resistant, and thermally stable polymer

Design:

Two coupling hubs are concentrically machined with curved jaws

Speeds:

See table below *Please contact R+W ISO 2.5 balance grade available

Tolerance:

Overall clearance between shaft and hub 0.01 to 0.05 mm

Model EKL															S	Serie	s												
IVIOUEI EKL				2			5			10			20			60			150			300			450			800	
Type (Elastomer insert)			А	В	С	А	В	С	А	В	С	А	В	С	А	В	С	Α	В	С	А	В	С	А	В	С	А	В	С
Rated torque	(Nm)	T _{kn}	2	2.4	0.5	9	12	2	12.5	16	4	17	21	6	60	75	20	160	200	42	325	405	84	530	660	95	950	1100	240
Max. torque**	(Nm)	T _{Kmax}	4	4.8	1	18	24	4	25	32	6	34	42	12	120	150	35	320	400	85	650	810	170	1060	1350	190	1900	2150	400
Overall length	(mm)	А		20			26			32			50			58			62			86			94			123	
Outside diameter	(mm)	В		16			25			32			42			56			66.5			82			102			136.5	
Outside diameter with screw head	(mm)	B _s		17			25			32			44.5			57			68			85			105			139	
Mounting length	(mm)	С		6			8			10.3			17			20			21			31			34			46	
Inside diameter range H7	(mm)	D _{1/2}		3 - 8		4	- 12.7	7		4 - 16			8 - 25			12 - 32	2	1	9 - 36			20 - 45	5		28 - 60)		35 - 80)
Inside diameter of elastomer	(mm)	D _F		6.2			10.2			14.2			19.2			26.2			29.2			36.2			46.2			60.5	
Clamping screw (ISO 4762)				M2			M3			M4			M5			M6			M8			M10			M12			M16	
Tightening torque of the clamping screw	(Nm)	E		0.6			2			4			8			15			35			70			120			290	
Distance between centers	(mm)	F		5.5			8			10.5			15.5			21			24			29			38			50.5	
Distance	(mm)	G		3			4			5			8,5			10			11			15			17.5			23	
Hub length	(mm)	Н		12			16.7			20.7			31			36			39			52			57			74	
Moment of inertia per Hub (10-3	kgm²)	J_1/J_2	(0.0003	3		0.002			0.003			0.01			0.04			0.08			0.3			0.66			8	
Approx. weight	(kg)			0.008			0.02			0.05			0.12			0.3			0.5			0.9			1.5			8.5	
Speed standard	(min ⁻¹)			15,000)	1	15,000)		13,000)		12,500)		11,000)		0,000			9,000			8,000			4,000	
*Speed balanced (10	³ min ⁻¹)		60	15,000 67 45 5		57	65	43	53	63	40	45	60	35	31	31	25	22	26	18	22	26	16	16	17	12	13	13	8

Information about static and dynamic torsional stiffness as well as max. possible misalignment see page 5

** Maximum transmittable torque depends on the bore diameter (overall clearance between shaft and hub 0.01 to 0.05 mm; shaft oiled)

Series	Ø 3	Ø 4	Ø 5	Ø 8	Ø 16	Ø 19	Ø 25	Ø 30	Ø 32	Ø 35	Ø 45	Ø 50	Ø 55	Ø 60	Ø 65	Ø 70	Ø 75	Ø 80
2	0,2	0,8	1,5	2,5														
		1,5	2	8														
10			4	12	32													
20				20	35	45	60											Í
60					50	80	100	110	120									
150						120	160	180	200	220								
300						200	230	300	350	380	420							ĺ
450								420	480	510	600	660	750	850				
800										700	750	800	835	865	900	925	950	1000

Higher torque through additional key possible.

EKL / 60 / A / 19.05 /24 / XX

Ordering example

All data is subject to change without notice.

MODEL EK2

BACKLASH FREE ELASTOMER COUPLINGS

Standard version with clamping hubs

Properties:

- easy assembly
- concentrically machined hubs
- vibration damping
- electrically isolating
- backlash free
- press fit design

Material:

Clamping hub: up to series 450 high strength aluminum, from series 800 and up steel Elastomer insert: precision molded, wear resistant, and thermally stable polymer

Design:

Two coupling hubs are concentrically machined with curved jaws

Speeds:

See table below *Please contact R+W ISO 2.5 balance grade available

Tolerance:

Overall clearance between shaft and hub 0.01 to 0.05 \mbox{mm}

Model EK 2											Ser	ies								
				20			60			150			300			450			800	
Type (Elastomer insert)			А	В	С	А	В	С	А	В	С	А	В	С	А	В	С	А	В	С
Rated torque (N	Nm)	T _{kn}	17	21	6	60	75	20	160	200	42	325	405	84	530	660	95	950	1100	240
Max. torque** (N	Nm) 🔳	Г _{ктах}	34	42	12	120	150	35	320	400	85	650	810	170	1060	1350	190	1900	2150	400
Overall length (n	mm)	А		66			78			90			114			126			162	
Outside diameter (n	mm)	В		42			56			66.5			82			102			136.5	
Outside diameter with screw head (n	nm)	Bs		44.5			57			68			85			105			139	
Mounting length (n	mm)	С		25			30			35			45			50			65	
Inside diameter range H7 (n	mm)	D _{1/2}		8 - 25			12 - 32			19 - 36			20 - 45			28 - 60			35 - 80	
Inside diameter of elastomer (n	nm)	D _F		19.2			26.2			29.2			36.2			46.2			60.5	
Clamping screw (ISO 4762)				M5			M6			M8			M10			M12			M16	
Tightening torque of the clamping screw (N	Nm)	E		8			15			35			70			120			290	
Distance between centers (n	mm)	F		15.5			21			24			29			38			50,5	
Distance (n	nm)	G		8.5			10			12			15			17.5			23	
Hub length (n	mm)	Н		39			46			52.5			66			73			93.5	
Moment of inertia per Hub (10-3 kg	gm²) 👃	J_1/J_2		0.016			0.05			0.13			0.4			0.9			9.5	
Approx. weight	(kg)			0.15			0.35			0.6			1.1			1.7			10	
Speed standard (mi	iin ^{.1})			12,500			11,000			10,000			9,000			8,000			4,000	
*Speed balanced (10 ³ mi	iin ^{.1})		45	60	35	31	31	25	22	26	18	22	26	16	16	17	12	13	13	8

Information about static and dynamic torsional stiffness as well as max. possible misalignment see page 5

** Maximum transmittable torque depends on the bore diameter (overall clearance between shaft and hub 0.01 to 0.05 mm; shaft oiled)

Series	Ø 8	Ø 16	Ø 19	Ø 25	Ø 30	Ø 32	Ø 35	Ø 45	Ø 50	Ø 55	Ø 60	Ø 65	Ø 70	Ø 75	Ø 80
20	20	35	45	60											
60		50	80	100	110	120									
150			120	160	180	200	220								
300			200	230	300	350	380	420							
450					420	480	510	600	660	750	850				
800							700	750	800	835	865	900	925	950	1000

Higher torque through additional key possible.

Ordering example EK2 / 60 / A /19.05 / 24 / XX Model Series Type Elastomer insert Bore Ø D1 H7 Bore Ø D2 H7 Non standard e.g. finely balanced

All data is subject to change without notice.

MODEL **EKH**

BACKLASH FREE ELASTOMER COUPLINGS

with split clamping hubs

Properties:

- lateral mounting possible
- concentrically machined hubs
- vibration damping
- electrically isolating
- easy mounting
- backlash free

Material:

Clamping hub: up to series 450 high strength aluminum, series 800 and up steel

Elastomer insert: precision molded, wear resistant, and thermally stable polymer

Design:

Both clamping hubs are fully separable due to split hubs and ISO 4762 clamping screws

Speeds:

See table below

*Please contact R+W ISO 2.5 balance grade available

Tolerance:

Overall clearance between shaft and hub 0.01 to 0.05 \mbox{mm}

																S	erie	s											
Model EKH				10			20			60			150			300			450			800		25	00	45	500	95	00
Type (Elastomer insert)			А	В	С	А	В	С	А	В	С	Α	В	С	А	В	С	А	В	С	А	В	С	А	В	А	В	А	В
Rated torque	(Nm)	T _{KN}	12,6	16	4	17	21	6	60	75	20	160	200	42	325	405	84	530	660	95	950	1100	240	1950	2450	5000	6200	10000	12500
Max. torque**	(Nm)	T _{Kmax}	25	32	6	34	42	12	120	150	35	320	400	85	650	810	170	1060	1350	190	1900	2150	400	3900	4900	10000	12400	20000	25000
Overall length	(mm)	Α		53			66			78			90			114			126			162		2	13	2	72	34	41
Length of center section	(mm)	A _E		20			28			33			37			49			51			65		7	8	1	04	13	31
Outside diameter	(mm)	В		32			42			56			66.5			82			102			136.5		1	60	2	25	20	90
Outside diameter with screw head	(mm)	B _s		32			44.5			57			68			85			105			139		1	55	1	90	24	43
Mounting length	(mm)	С		20			25			30			35			45			50			65		8	85	1	10	14	40
Inside diameter range H7	(mm)	D _{1/2}	6	- 16		1	8 - 25		1	12 - 3	2	1	9 - 36	5		20 - 45	5	2	.8 - 60)	3	35 - 80)	35	- 90	40 -	- 120	50 -	140
Inside diameter of elastomer	(mm)	D _E		14.2			19.2			26.2			29.2			36.2			46,2			60.5		7	'9	1	13	14	45
Clamping screw (ISO 4762)			4	x M4	1	4	x M5		L	4 x M	6	4	x M8	}	4	4 x M1	0	4	x M1	2	4	x M1	6	4 x	M16	8 x	M16	8 x	M24
Tightening torque of the clamping screw	(Nm)			4			8			15			35			70			120			290		3	00	3	00	98	80
Distance between centers	(mm)	F		10.5			15.5			21			24			29			38			50.5		Ę	7	7.	2,5	9	90
Distance	(mm)	G/G ₁		7.5			8.5			10			12			15			17.5			23		3	6	24	/ 56	28	/ 74
Hub length	(mm)	H/H,		31			39			46			52.5			66			73			93.5		120	/ 69	154	/ 80	193	/ 110
Moment of inertia per Hub (10-	³ kgm ²)	J_1/J_2	(0.005			0.02			0.06			0.1			0.4			1			9.5		L	0	1	47	48	80
Approx. weight	(kg)			80.0			0.15			0.35			0.6			1.1			1.7			10		1	25	2	25	5	i3
Speed standard	(min ⁻¹)		1	3,000)	1	2,500)		11,00	0	1	0,000)		9,000			8,000			4,000		3,0	000	3,	500	2,0	000
*Speed balanced (10				63	40	45	60	35	31	31	25	22	26	18	22	26	16	16	17	12	13	13	8	10	10	8	8	6,5	6,5

Information about static and dynamic torsional stiffness as well as max. possible misalignment see page 5

** Maximum transmittable torque depends on the bore diameter (overall clearance between shaft and hub 0.01 to 0.05 mm; shaft oiled)

Series	00	00	010	017	10 Z J	0 30	10 32	0 33	045	0 30	0 33	00 00	000	010	015	00 00	10 70	0 120	0 140
10	6	12	32																
20		30	40	50	65														
60			65	120	150	180	200												
150				180	240	270	300	330											
300				300	340	450	520	570	630										
450						630	720	770	900	1120	1180	1350							
800								1050	1125	1200	1300	1400	1450	1500	1550	1600			
2500								1900	2600	2900	3200	3500	3800	4000	4300	4600	5200		
4500									5300	5800	6300	7000	7600	8200	8800	9400	10600	14100	
9500										9200	10100	11100	11900	12800	13800	14800	16700	22000	25600

Ordering example

Higher torque through additional key possible.

All data is subject to change without notice.

EKH/ 60 / A /19.05 / 24 / XX

MODEL EK6

BACKLASH FREE ELASTOMER COUPLINGS

with conical clamping ring

Properties:

- high clamping forces
- concentrically machined hubs
- vibration damping
- electrically isolating
- backlash free
- press fit design
- axial mounting possible

Material:

Clamping hub and clamping ring: up to series 450 high strength aluminum, series 800 and up steel Elastomer insert: precision molded, wear resistant, and thermally stable polymer

Design:

Two coupling hubs are concentrically machined with curved jaws

Speeds: See table below *Please contact R+W

ISO 2.5 balance grade available

Tolerance:

Overall clearance between shaft and hub 0.01 to 0.05 mm

Model EK 6																5	Serie	es											
IVIOUEI EK O				10			20			60			150			300			450			300		25	00	45	00	95	00
Type (Elastomer insert)			А	В	С	А	В	С	А	В	С	А	В	С	А	В	С	А	В	С	А	В	С	А	В	А	В	А	В
Rated torque	(Nm)	T _{KN}	12,6	16	4	17	21	6	60	75	20	160	200	42	325	405	84	530	660	95	950	1100	240	1950	2450	5000	6200	10000	12500
Max. torque	(Nm)	T _{Kmax}	25	32	6	34	42	12	120	150	35	320	400	85	650	810	170	1060	1350	190	1900	2150	400	3900	4900	10000	12400	20000	25000
Overall length	(mm)	А		42			56			64			76			96			110			138		1	77	2	27	28	32
Outside diameter	(mm)	B/B ₁		32			43			56			66			82			102		1	36.5		160	/ 158	225	/ 208	29	90
Mounting length	(mm)	С		15			20			23			28			36			42			53		7	0	ç	0	11	12
Inside diameter range H7	(mm)	D _{1/2}		6 - 16			8 - 24			2 - 3	2	1	9 - 35	5	2	20 - 4	5	:	28 - 55	j	3	2 - 80)	40	- 95	50 -	130	60 -	165
Inside diameter of elastomer	(mm)	D _E		14.2			19.2			26.2			29.2			36.2			46.2			60.5		9	5	1	30	17	70
Clamping screw (ISO 4762)				3x M3	3	(6x M4			4x M§	5	8	Bx M5	i	8	Bx Mé)		8x M8		8)	(M1))	10x	M10	10x	M12	10x	M16
Tightening torque of the clamping screw	(Nm)	E		2			3			6			7			12			35			55		6	0	1	00	16	50
Distance	(mm)	F																						5	1	e	6	8	0
Moment of inertia per Hub	(10 ⁻³ kgm ²)	J_1/J_2		0.004			0.015			0.05			0.1			0.3			0.85			9.2		31	.7	13	5.7	46	9.2
Approx. weight	(kg)			0.08			0.12			0.3			0.5			0.9			1.5			9.6		1	5	3	5	7	3
Speed standard	(min-1)		ź	20,000)		19,000)		4,00	D	1	3,000)	1	0,00)		9,000		4	,000		3,5	500	3,0	000	2,0	000
*Speed balanced	(10 ³ min ⁻¹)		53	63	40	45	60	35	31	31	25	22	26	18	22	26	16	16	17	12	13	13	8	10	10	8	8	6.5	6.5

Information about static and dynamic torsional stiffness as well as max. possible misalignment see page 5

1 Nm = 8.85 in lbs

Lateral access holes for screw tightening are not necessary with EK6 couplings. The unique assembly screw design (shown at right) allows for easy axial mounting and dismounting of the coupling hub

Ordering example
EK6 / 60 / A / 19.05 /24 / XX
Model Series Type Elastomer insert Bore Ø D1 H7 Bore Ø D2 H7
Non standard e.g. anodized

All data is subject to change without notice.

R+W 9

MODEL EK7

BACKLASH FREE ELASTOMER COUPLINGS

with expanding shaft

Properties:

- short compact design
- easy mounting
- concentrically machined hubs
- axial installation with expanding shaft
- backlash free
- electrically isolating

Material:

Clamping hub: up to series 450 high strength aluminum, from series 800 and up steel

Expanding shaft & cone: steel

Elastomer insert: precision molded, wear resistant, and thermally stable polymer

Design:

Two coupling hubs are concentrically machined with curved jaws

One side with clamping hub and screw per ISO 4762 One side with expanding shaft and internally tapered clamping element

Speeds: See table below

- *Please contact R+W
- ISO 2.5 balance grade available

Tolerance:

Overall clearance between shaft and hub 0.01 to 0.05 mm Suggested bore tolerance for expanding shaft ISO H7

														Ser	ies											
Model EK7				5			10			20			60			150			300			450			800	
Type (Elastomer insert)			А	В	С	Α	В	С	А	В	С	А	В	С	А	В	С	Α	В	С	А	В	С	А	В	С
Rated torque	(Nm)	T _{KN}	9	12	2	12,5	16	4	17	21	6	60	75	20	160	200	42	325	405	84	530	660	95	950	1100	240
Max. torque**	(Nm)	T _{Kmax}	18	24	4	25	32	6	34	42	12	120	150	35	320	400	85	650	810	170	1060	1350	190	1900	2150	400
Overall length	(mm)	А		22			28			40			46			51			68			76			94	
Outside diameter	(mm)	В		25			32			42			56			66.5			82			102			136.5	
Outside diameter with screw	head (mm)	B _s		25			32			44.5			57			68			85			105			139	
Mounting length	(mm)	C ₁		8			10.3			17			20			21			31			34			46	
Mounting length	(mm)	C ₂		12			20			25			27			32			45			55			60	
Inside diameter range H7	(mm)	D ₁		4 - 12	.7		5 - 16)		8 - 25			12 - 32			19 - 36)		20 - 45			28 - 60)		35 - 80)
Outside diameter range h7	(mm)	D ₂		10 - 16			13 - 25	j		14 - 30	1		23 - 38			26 - 42	2		38 - 60)		42 - 70)	4	42 - 80)
Inside diameter of elastomer	r (mm)	D _e		10.2			14.2			19.2			26.2			29.2			36.2			46.2			60.5	
Clamping screw (ISO 4762)		F		M3			M4			M5			M6			M8			M10			M12			M16	
Tightening torque	(Nm)			2			4			8			15			35			70			120			290	
Clamping screw (ISO 4762)				M4			M5			M6			M8			M10			M12			M16			M16	
Tightening torque	(Nm)	E ₂		4			9			12			32			60			110			240			300	
Distance between centers	(mm)	F		8			10.5			15.5			21			24			29			38			50.5	
Distance	(mm)	G		4			5			8,5			10			11			15			17.5			23	
Length	(mm)	Н		7			7			10			11			16			20			27			27	
Moment of inertia D ₁	(10 ⁻³ kgm ²)	J ₁		0.002			0.003			0.01			0.04			0.08			0.3			0.66			8	
Moment of inertia D ₂	f inertia D_2 (10 ⁻³ kgm ²)						0.01			0.04			0.1			0.2			1			2.6			9	
Approx. weight	ght (kg)						0.05			0.12			0.3			0.5			0.9			1.5			7.6	
Speed standard	. ,						13,000)		12,500			11,000			10,000	1		9,000			8,000			4,000	
*Speed balanced	· · ·				43	53	63	40	45	60	35	31	31	25	22	26	18	22	26	16	16	17	12	13	13	8

Information about static and dynamic torsional stiffness as well as max. possible misalignment see page 5

1 Nm = 8.85 in lbs

** Maximum transmittable torque depends on the bore diameter (overall clearance between shaft and hub 0.01 to 0.05 mm; shaft oiled)

TECHNICAL INFORMATION EK7

Mounting of the clamping hub:

Slide the coupling hub onto the shaft to the correct axial position. Tighten the clamping screw to the specified tightening torque E₁.

See page 10/collumn E₁.

Dismounting of the clamping hub: Loosen the clamping screw E₁.

Mounting of the expanding shaft: Push the shaft hub into the bore, at the right axial position thighten the mounting screw to the specified tightening torque E₂.

See page 10/collumn E₂

Dismounting of the expanding shaft:

Loosen the fastening screw $\mathrm{E_2}$ a few turns.

Apply axial pressure to the screw head, sliding the cone out of its sleeve.

The shaft is now loose and can be dismounted.

Advantage:

Lateral access holes for screw tightening are not necessary with EK7 couplings. The unique assembly screw design (shown at right) allows for easy axial mounting and dismounting of the coupling hub.

CAUTION:

The elastomer insert must have clearance to slide axially for the compensation of axial misalignment.

Maximum transmittable torque of the clamping hub depends on the bore diameter

	r	-	-		-	-	-	-	-	-	r		-	-		-	r —	-
Series	Ø 3	Ø 4	Ø 5	Ø 8	Ø 16	Ø 19	Ø 25	Ø 30	Ø 32	Ø 35	Ø 45	Ø 50	Ø 55	Ø 60	Ø 65	Ø 70	Ø 75	Ø 80
		1,5	2	8														
10			4	12	32													
20				20	35	45	60											
60					50	80	100	110	120									
150						120	160	180	200	220								
300						200	230	300	350	380	420							
450								420	480	510	600	660	750	850				
800										700	750	800	835	865	900	925	950	1000

Higher torque through additional keyway possible.

Ordering example
EK7 / 20 / A / 24 / 19.05 / XX
Model
Series
Type Elastomer insert
Bore Ø D1 H7
Shaft Ø D2 h7
Non standard e.g. finely balanced

All data is subject to change without notice.

MODEL EK1

BACKLASH FREE ELASTOMER COUPLINGS

ØD,

Elastomer insert Type A / B

Properties:

- economical design
- concentrically machined
- vibration damping
- electrically isolating
- press fit design
- low backlash, due to keyway connection

Material:

Coupling hub: up to series 450 high strength aluminum, series 800 and up steel

Elastomer insert: precision molded, wear resistant, and thermally stable polymer

Design:

Two coupling hubs are concentrically machined with curved jaws

Bore tolerance H7 + keyway + set screw per DIN 916 Optional pilot bore (D_v)

Speeds:

See table below

*Please contact R+W ISO 2.5 balance grade available

Tolerance:

Overall clearance between shaft and hub 0.01 to 0.05 mm

Model EK 1																			Se	ries													
			2						10		2	0		60		1	50			300		4	50			800		25	00	45	00	95	500
		А	В	С	А	В	С	А	В	C /	A E	3 C	А	В	С	А	В	С	А	В	С	А	В	С	А	В	С	А	В	А	В	А	В
(Nm)	T _{KN}	2	2.4	0.5	9	12	2	12.5	16	4 1	7 2	1 6	60	75	20	160	200 4	42	325	405 8	4	530 6	60	95	950	1100	240	1950	2450	5000	6200	10000	12500
(Nm)	T _{Kmax}	4	4.8	1	18	24	4	25	32	63	4 4	2 12	2 120) 150	35	320	400 8	35 (650	810 1	70 1	1060 1	350	190	1900	2150	400	3900	4900	10000	12400	20000	25000
(mm)	А		20 34				35		6	6		78			90			114		1	26			162		2	13	2	72	3	41		
(mm)	B/B ₁		15			25			32		4	2		56		6	6.5			82		1	02			136.5	j	160	/ 155	225	/ 190	290	/ 240
(mm)	С		6.5			12			12		2	5		30			35			45		Į	50			65		8	88	1	13	1-	42
(mm)	Dv		3			4			6		7	7		9			14			18		2	22			29		13	80	4	10	5	50
(mm)	D _{1/2}		3 - 9)	6	5 - 15		6	- 18		8 -	25		12 - 3	32	19	- 38		20) - 45		28	- 60		3	2 - 8	0	30	- 95	40 -	130	50 -	- 170
(mm)	D _E		6,2			10,2		1	4,2		19	,2		26.2	2	ź	9,2			36.2		4	6,2			60,5		7	'9	1	13	1-	45
	E															see	table	e (de	eper	nding	on l	bore Ø	í)**										
(mm)	G		3			5			6		ç)		11			12			15			17			30		2	25	3	80	4	40
(mm)	Н		4			6			6		1	9		22			26			32			37			43		e	9	8	39	1	10
(10 ⁻³ kgm ²)	J_1/J_2	0	.000	1	0	0.001		0	.003		0.0	02		0.06	ó		0.1			0.4		1	.1			12		4	10	1	47	4	80
(kg)		(0.00	3		0.03		C	.08		0.	15		0.35	5		0.6			1.1		1	.7			11		12	2.5	2	25	5	53
(min ⁻¹)		1	5,00	0	1	5,000)	13	,000		12,	500		11,00	00	10	,000		9	,000,		8,	000			4,000)	3,	500	3,0	000	2,0	000
(10 ³ min ⁻¹)		60	67	45	57	65	43	53	63 4	40	56	0 35	5 31	31	25	22	26 1	18	22	26 1	6	16	17	12	13	13	8	10	10	8	8	6.5	6.5
	(Nm) (mm) (mm) (mm) (mm) (mm) (mm) 10 ⁻³ kgm ²) (kg) (min ⁻¹)	$\begin{array}{c} (Nm) & T_{Kmat} \\ (Nm) & T_{Kmat} \\ (mm) & A \\ (mm) & B/B_1 \\ (mm) & C \\ (mm) & D_{1/2} \\ (mm) & D_{1/2} \\ (mm) & D_{1/2} \\ (mm) & B_{1/2} \\ (mm) & B_{1/2} \\ (mm) & H \\ 10^3 kgm^2) & J_1/J_2 \\ (kg) \\ (min^{-1}) \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c } & A & A & B & C \\ \hline (Nm) & T_{Kma} & 4 & 48 & 1 \\ \hline (Nm) & A & 2 \\ \hline (Nm) & A & 2 \\ \hline (mm) & A & -1 \\ \hline (mm) & B/B_1 & -1 \\ \hline (mm) & C & -6.5 \\ \hline (mm) & D_{1/2} & 3 \\ \hline (mm) & D_{1/2} & 3 \\ \hline (mm) & D_{E} & -6.2 \\ \hline (mm) & G & 3 \\ \hline (mm) & H & 4 \\ \hline 10^3 kgm^2) & J_1/J_2 & 0.001 \\ \hline (kg) & 0 & 0.08 \\ \hline (min^{-1}) & 15.00 \\ \end{array}$	$\begin{array}{ c c c c c c c c } \hline A & A & B & C & A \\ \hline A & A & B & C & A \\ \hline A & C & C & C & C & C \\ \hline A & C & C & C & C & C \\ \hline A & C & C & C & C & C \\ \hline A & C & C & C & C & C \\ \hline A & C & C & C & C & C \\ \hline A & C & C & C & C & C \\ \hline A & C & C & C & C & C \\ \hline A & C & C & C & C & C \\ \hline A & C & C & C & C & C \\ \hline A & C & C & C & C & C \\ \hline A & C & C & C & C & C \\ \hline A & C & C & C & C & C \\ \hline A & C & C & C & C & C \\ \hline A & C & C & C & C & C \\ \hline A & C & C & C & C & C \\ \hline A & C & C & C & C & C \\ \hline A & C & C & C & C & C \\ \hline A & C & C & C \\ \hline A$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

А

Information about static and dynamic torsional stiffness as well as max. possible misalignment see page 5

Details of pilot bored coupling hubs (D,)

It's critical that modifications of the hub are machined concentrically and perpendicular to the through bore.

Ordering example

All data is subject to change without notice.

Hubs with bore diameter <6mm delivered without keyway

MODEL EK4

BACKLASH FREE ELASTOMER COUPLINGS

Elastomer insert Type A / B / C

Model EK 4						S	Serie	S			
IVIOUEI EK 4				20			60			150	
Type (Elastomer insert)			А	В	С	А	В	С	А	В	С
Rated torque	(Nm)	T _{kn}	17	21	6	60	75	20	160	200	42
Max. torque*	(Nm)	T _{Kmax}	34	42	12	120	150	35	320	400	85
Overall length	(mm)	Α		42			50			57	
Outside diameter of clamping hub	(mm)	Β,		42			56			66,5	
Outside diameter of tapered bore hub	(mm)	B ₂	١	variable	9	٧	/ariable	9	١	/ariable	ý
Outside diameter with screw head	(mm)	Bs		44.5			57			68	
Mounting length	(mm)	C,		25			30			35	
Mounting length	(mm)	C ₂	\	ariable	Э	V	/ariable	е	١	/ariable	ò
Inside diameter range H7	(mm)	D_1		8-25			12-32			19-36	
Possible tapered bore diameter	(mm)	D ₂			Acc. to	custor	mer re	quirem	ent***		
Inside diameter of elastomer	(mm)	D _E		19.2			26.2			29.2	
Clamping screw (ISO 4762)				M5			M6			M8	
Tightening torque of the clamping screw	(Nm)	E		8			15			35	
Distance between centers	(mm)	F		15.5			21			24	
Distance	(mm)	G		8.5			10			12	
Length	(mm)	Н	١	ariable	9	V	/ariable	e	١	/ariable)
speed standard	(min ⁻¹)			12,500			11,000)		10,000	
**speed balanced (10	³ min ⁻¹)		45	60	35	31	31	25	22	26	18

Information about static and dynamic torsional stiffness as well as max. possible misalignment see page 5 $\,$

Maximum transmittable torque depends on the bore diameter (overall clearance between shaft and

hub 0.01 to 0.05 mm; shaft oiled) *** Caution: Dimensions C2, H and B2 depend on the final design of the tapered shaft.

Series	Ø 8	Ø 16	Ø 19	Ø 25	Ø 30	Ø 32	Ø 35
20	20	35	45	60			
60		50	80	100	110	120	
150			120	160	180	200	220

Higher torque through additional key possible

for conical shaft ends

Properties:

- for tapered shafts
- short compact design
- easy assembly
- concentrically machined hubs
- concentrically
 backlash free
- electrically isolating

Material:

Clamping hubs D_1 : high strength aluminum Conical hub D_2 : steel Elastomer insert: precision molded, wear resistant, and thermally stable polymer

Design:

Two coupling hubs are concentrically machined with curved jaws

One side with clamping hub and screw per ISO 4762 One side with tapered bore and keyway per customer specifications

Speed: See table below

**Please contact R+W

ISO 2.5 balance grade available

Tolerance:

Overall clearance between shaft and hub 0.01 to 0.05 $\,\rm mm$

Ordering example

All data is subject to change without notice.

Installation instruction

Mounting of the clamping hub: Slide the coupling onto the shaft. At the correct axial position tighten the clamping screw to the specified tightening torque as shown in the table (column E).

Mounting of the tapered bore hub: After inserting the key into the key seat of the motor shaft, slide the coupling hub onto the shaft. Check to ensure a proper seat of the hub onto the shaft. Tighten the nut (3) on the motor shaft, using the exact tightening torque specified by the motor manufacturer.

MODEL EZ2

BACKLASH FREE LINE SHAFTS

Ordering example

All data is subject to change without notice.

Assembly instructions

The total length of the axis is defined by the distance P + 2x0.

with split clamping hubs

Properties:

- lateral mounting with split clamping hubs
- lengths up to 4 meters
- no intermediate support bearing required
- Iow moment of inertia
- vibration damping
- press fit design
- backlash free

Material:

Clamping hub: up to series 450 high strength aluminum, series 800 and up steel Elastomer insert: precision molded, wear resistant, and thermally stable polymer Intermediate tube: up to series 450 precision machined aluminum tube; series 800 and up steel, composite tubes are also available

Design:

Two coupling hubs are concentrically machined with curved jaws

Elastomer inserts are available in type A or B The two coupling elements are connected with a precise and concentrically machined aluminum tube

Speed:

Please advise the application speed when ordering or inquiring about EZ Line shafts

Tolerance:

Overall clearance between shaft and hub 0.01 to 0.05 $\mbox{ mm}$

R+W calculation program

With specially developed sofware R+W can calculate the critical resonant speeds for each application.

Results of a calculation are shown below.

The critical speed can be altered by changing the tube material and/or other parameters.

Critical resonant speed	n _{kb}	=	rpm
Maximum speed	n _B	=	rpm
Torsional deflection	φ	=	Degree-Min-Sec
Total stiffness EZ 2	C_{Tdyn}^{EZ}	=	Nm/rad
Permissible lateral misalignment	ΔKr	=	mm
Weight of total axis	m	=	kg
Mass moment of inertia	J	=	kgm ²

MODEL EZ2

BACKLASH FREE LINE SHAFTS

												Sei	ries									
Model EZ 2			1	0	2	0	6	0	15	50	30)0	4	50	8)0	25	00	45	00	95	00
Type (Elastomer insert)			А	В	А	В	А	В	А	В	А	В	А	В	А	В	А	В	А	В	А	В
Rated torque	(Nm)	T _{kn}	12.5	16	17	21	60	75	160	200	325	405	530	660	950	1100	1950	2450	5000	6200	10000	12500
Max. torque*	(Nm)	T _{Kmax}	25	32	34	42	120	150	320	400	650	810	1060	1350	1900	2150	3900	4900	10000	12400	20000	25000
Overall length	(mm)	А	95 - 4	1000	130 -	4000	175 -	4000	200 -	4000	245 -	4000	280 -	4000	320 -	4000	460 -	4000	580 -	4000	710 -	4000
Outside diameter of clamping	hub(mm)	Β,	3	2	4	2	5	6	66	,5	8	2	1()2	13	6,5	16	50	22	25	29	90
Outside diameter of tube	(mm)	B ₂	2	8	3	5	5	0	6	0	7	6	9	0	1:	20	15	50	17	75	22	20
Outside diameter with screw he	ead (mm)	B _s	3	2	44	,5	5	7	6	8	8	5	1()5	1.	39	15	55	19	90	24	43
Fit length	(mm)	С	2	0	2	5	4	0	4	7	5	5	6	5	7	9	8	5	1	10	14	40
Inside diameter range H7	(mm)	D _{1/2}	5 -	16	8 -	25	14 -	- 32	19 -	36	19 -	45	24	60	35	- 80	35 -	- 90	40 -	120	50 -	140
Claming screw (ISO 4762)			4 x M4		4 x	M5	4 x	M6	4 x	M8	4 x 1	V10	4 x	V12	4 x	V16	4 x I	M16	8 x I	W16	8 x I	M24
Tightening torque of the clamping screw	(Nm)	E	4	ļ	8	}	1	5	3	5	7	0	12	20	21	90	29	90	29	90	91	80
Distance between centers	(mm)	F	10	.5	15	.5	2	1	2	4	2	9	3	8	50),5	5	7	72	2,5	9	0
Distance	(mm)	G/G ₁	7.	5	8.	5	1	5	17	.5	2	0	2	5	3	0	3	6	24 /	/ 56	28	/ 74
Length of the couplings	(mm)	Н	3	4	4	6	6	3	7	3	8	6	9	9	1:	25	14	47	18	36	23	33
Moment of inertia per coupling hub (1	0 ⁻³ kgm²)	J ₁ /J ₂	0.0)1	0.0)2	0.	.5	0.	21	1.(02	2	.3	1	7	3	0	14	10	4	50
Inertia of tube per meter (1	0 ⁻³ kgm ²)	J_{3}	0.0	75	0.1	83	0.0	66	1.1	18	2.4	48	10	.6	3	8	36	50	75	50	1,8	300
Combined dynamic torsional stiffness of the inserts (Nm/rad)	C_E	270	825	1,270	2,220	3,970	5,950	6,700	14,650	11,850	20,200	27,700	40,600	41,300	90,000	87,500	108,000	168,500	500 371,500 590		670,000
Torsional stiffness of tube per meter (Nm/rad)	C_{T}^{ZWR}	32	21	1,5	30	6,6	532	11,8	810	20,2	230	65,	340	392	,800	1,000	0,000	2,500	0,000,	5,00	0,000
Distance between centers	(mm)	Ν	2	6	3	3	4	9	5	7	6	7	7	8	9	4	10)8	13	37	1	71
Mounting length	(mm)	0	16	.6	18	.6	3	2	3	7	4	2	5	2	6	2	6	7	8	4	1(05

 * Max. transmittable torque of the clamping hub depends on the bore diameter; see EKH (page 8)

MODEL **EZV**

variable length

BACKLASH FREE LINE SHAFTS

All data is subject to change without notice.

Assembly instructions

After loosening the clamping screws E2, slide and / or rotate the tube sections to the desired positions. Once positioned, tighten the screws to the appropriate tightening torque, whereby guaran-

teeing a high level of concentricity for the line shaft assembly.

variable le

Properties:

- lateral mounting with split clamping hubs
- lengths up to 4 meters
- adjustable in length
- Iow moment of inertia
- vibration dampingpress fit designs
- press fit design
 backlach from
- backlash free

Material:

Clamping hub: high strength aluminum. Elastomer insert: precision molded wear resistant, and thermally stable polymer. Intermediate tubes: precision machined aluminum tube, steel or composite tube are upon request available.

Design:

Two split clamping hubs on each end are concentrically machined with curved jaws. Both coupling bodies are solidly joined to the tubes with a high level of concentricity. Loosening the intermediate clamp allows for a variation of length and rotational orientation. Elastomer inserts are available in type A or B.

Speed:

To control the critical resonant speed please advise the application speed when ordering or inquiring about EZ Line Shafts.

Tolerance:

Overall clearance between shaft and hub 0.01 to 0.05 \mbox{mm}

R+W calculation program

With specially developed sofware $\mathsf{R}\mathsf{+}\mathsf{W}$ can calculate the critical resonant speeds for each application.

Results of a calculation are shown below.

The critical speed can be altered by changing the tube material and/or other parameters.

Critical resonant speed	n _{kb}	=	rpm
Maximum speed	n _B	=	rpm
Torsional deflection	φ	=	Degree-Min-Sec
Total stiffness EZ 2	C_EZ	=	Nm/rad
Permissible lateral misalignment	C _{⊤dyn} ∆ Kr	=	mm
Weight of total axis	m	=	kg
Mass moment of inertia	J	=	kgm ²

MODEL EZV

BACKLASH FREE LINE SHAFTS

N/1 - F 7 \/							Sei	ies					
Model EZV		1	0	2	0	6	0	1!	50	30	00	45	0
Type (Elastomer insert)		А	В	А	В	A	В	А	В	А	В	А	В
Rated torque (Nm)	T _{kn}	12.5	16	17	21	60	75	160	200	325	405	530	660
Max. torque* (Nm)	T _{Kmax}	25	32	34	42	120	150	320	400	650	810	1060	1200
Range of possible minimum lengths (collapsed) (mm)	A _{min}	150 to	2 0 5 5	200 to	2075	250 to	2 0 9 5	300 to	2115	350 to	2130	400 to	2 150
Range of possible maximum lengths (extended) (mm)	A _{max}	190 to	4 000	250 to	4 000	310 to	4 000	370 to	4000	440 to	4 000	500 to	4 000
Measurement (mm)	X1+X2	11	15	15	56	19	97	24	10	28	30	31	2
Outside diameter of clamping hub (mm)	B ₁	3	2	4	2	5	6	66	,5	8	2	10	2
Outside diameter of tube (mm)	B ₂	2	8	3	5	5	0	6	0	8	0	9()
Outside diameter of center hub (mm)	B ₃	41	,5	4	7	6	7	7	7	10)2	11	5
Outside diameter with screw head (mm)	Bs	3	2	44	,5	5	7	6	8	8	5	10	5
Fit length (mm)	С	2	0	2	5	4	0	4	7	5	5	65	5
Inside diameter range H7 (mm)	D _{1/2}	5 to	5 to 16		25	14 t	o 32	19 t	o 35	19 te	o 45	24 to	60
Clamping screw (ISO 4762)	_	N	14	M	15	N	16	N	18	М	10	M1	2
Tightening torque of the clamping screw (Nm)	E ₁	,	1	8	3	1	5	3	5	7	0	12	0
Clamping screw (ISO 4762)	E ₂	N	14	N	14	N	15	N	16	N	18	M1	0
Tightening torque of the clamping screw(Nm)	- 2		1	4,	,5	8	3	1	8	3	5	7()
Distance between centers (mm)	F	10),5	15	,5	2	1	2	4	2	9	38	3
Distance between centers (mm)	F ₂	1	5	1	8	2	6	3	1	4	1	45	5
Distance (mm)	G	7	5	8,	,5	1	5	17	,5	2	0	25	5
Mounting length (mm)	0	16	0,6	18	1,6	3	2	3	7	4	2	52	2
Moment of inertia coupling half (10 ⁻³ kgm ²)	J_1/J_2	0,	01	0,0	02	0,	15	0,	21	1,0	02	2,	3
Inertia of tube per meter (10 ⁻³ kgm ²)	J ₃	0,0	175	0,1	83	0,	66	1,	18	2,4	48	10	,6
Combined dynamic torsional stiffness of the inserts (Nm/rad)	C_E	270	825	1,270	2,220	3,970	5,950	6,700	14,650	11,850	20,200	27,700	40,600
Torsional stiffness of tube per meter (Nm/rad)	C _T ^{ZWR}	32	21	1,5	i30	6,6	32	11,	810	20,2	230	65,3	40
Distance between centers (mm)	N	2	6	3	3	4	9	5	7	6	7	78	3
Length of the couplings (mm)	Н	3	4	4	6	6	3	7	3	8	6	99	9

Max. transmittable torque of the clamping hub depends on the bore diameter; see EKH (page 8)

1 Nm = 8.85 in lbs

Function

The collapsed and extended overall length values are related, becoming increasingly flexible with greater length. Length ranges can be calculated using the two formulas shown at left. For information regarding selection according to axial, angular and lateral misalignment, as well as torsional stiffness of the EZV, refer to page 15.

single-position multi-position load holding full disengagement

MODEL ES2

BACKLASH FREE TORQUE LIMITERS

Elastomer insert Type A / B

W = Single position re-engagement

- After the overload has been eliminated, the coupling will automatically reengage precisely 360° from the original disengagement position
- Highly precise synchronous engagement made possible by R+W patented preload design
- Signal at overload with mechanical switch or proximity sensor

D = Multi position re-engagement

- Coupling re-engages at multiple set angular intervals.
- Immediate availability of the machine as soon as the overload has been eliminated.
- Signal at overload with mechanical switch or proximity sensor
- Standard engagement every 60°
- Engagement at 30, 45, 90 and 120 degrees are optional.

G = Load holding version

- Mechanical overload detection device
- In the event of a torque overload the driving and driven ends are not fully separated, and allow only for enough free rotation to trigger the actuation ring. Full torque is then transmittable once again.
- Guaranteed to hold the load and signal an overload.
- Automatic engagement after the torque level has dropped.
- Signal at overload to detect with mechanical switch or proximity sensor.

F = Full disengagement

- Complete separation of the drive and driven ends in the event of a torque overload
- No residual friction
- Signal at overload
- Rotating elements slow down freely
- Coupling can be re-engaged manually (Engagement every 60°)

18 R+W

Keyway per DIN 6885 or ANSI dimensions (standard)

Elastomer insert consists of 5 individual segments A / B

Series

1500

with clamping hubs

Properties:

- reliable torque overload protection
- short compact design
- backlash free due to patented R+W design
- disengagement within msecs.
- large actuatuion path when disengaging
- electrically isolating
- press fit design

Material:

Torque limiter: high strength hardened steel with rust protected surface (oxidized) Clamping hub D_1 : up to series 450 high strength aluminum, series 800 and up steel Clamping hub D_2 : up to series 60 high strength aluminum, from series 150 and up steel Elastomer insert: precision molded, wear resistant, and thermally stable polymer

Design:

Two coupling hubs are concentrically machined with curved jaws, one side with an integral torque limiter The torque limiter is available in single position, multi position, load holding or full-disengagement versions.

Tolerance:

Overall clearance between shaft and hub 0.01 to 0.05 \mbox{mm}

Ordering example

ES2 / 10 / A / W /	14 / 12 / 8 /4-12 / XX
ModelSeries	
Function system	
Bore Ø D1 H7	
Bore Ø D2 H7	
Disengagement torque	
Adjustable range	
Non standard (e.g. stainless steel)	

All data is subject to change without notice.

The selection of torque limiters

In general the torque limiters are sized according to the necessary disengagement torque. This torque must exceed the torque required to accelerate and decelerate the machine drive during normal operation.

For more information see page 22.

MODEL ES2

BACKLASH FREE TORQUE LIMITERS

Model ES 2											Se	ries								
IVIOUEI ES Z			Ξ.	5	1	0	2	20	6	0	15	50	30	00	4	50	8	00	15	500
Type (Elastomer insert)			А	В	А	В	А	В	А	В	А	В	А	В	А	В	А	В	А	В
Rated torque	(Nm)	T _{kn}	9	12	12,5	16	17	21	60	75	160	200	325	405	530	660	950	1100	1950	2450
Max. torque*	(Nm)	T _{Kmax}	18	24	25	32	34	42	120	150	320	400	650	810	1060	1350	1900	2150	3900	4900
Available torque adjustment range (approx. values)	(Nm)	Τ _{κΝ}	1- C 3-		2 - C 4 -	r		- 25 or - 40	C	- 30 or - 80	20 - 45 - 80 -	150	150	- 200 - 240 - 320	200	- 200 - 350 - 500	500	- 650 - 800 - 900	700 -	- 850 - 1200 - 1800
Available torque adjustment range (approx. values) full disengagemen version		T _{kn} f	2.5	- 4.5	2 · C 5 -	-		- 20 or - 30	C	- 40 or - 60	20 - 40 - 80 -	80		- 180 or - 300	100	- 150 - 300 - 500	(- 400 or - 800	0	- 1250 or - 1500
Overall length	(mm)	А	5	0	6	0	8	36	9	6	10)6	14	40	1	64	1	79	24	45
Overall length (full disengagement version)	(mm)	A _F	5	0	6	0	8	36	9	6	1(08	14	43	1	68	1	90	25	57
Outside diameter of actuation ring	(mm)	В	3	5	4	5	e	55	7	3	9	2	1:	20	1	35	1	52	17	74
Outside diameter of actuation ring (full disengagement version)	(mm)	B _F	4	2	51	.5	7	70	8	3	9	8	1:	32	1	55	1	77	18	87
Fit Length	(mm)	C ₁	8	3	10	.3	1	17	2	0	2	1	3	1		34	4	6	8	38
Fit Length	(mm)	C ₂	1	4	1	6	2	27	3	1	3	5	4	2	5	i1	4	5	8	36
Length of hub	(mm)	C ₃	16	o.7	20	.7	3	31	3	6	3	9	5	2	5	57	7	74 120		20
Inside diameter range H7	(mm)	D ₁	4 - 1	12.7	5 -	16	8	- 25	12 -	- 32	19 -	- 36	20	- 45	28	- 60	35	- 80	35 -	- 90
Inside diameter range H7	(mm)	D ₂	6 -	14	6 -	20	12	- 30	15 -	- 32	19 -	- 42	30	- 60	35	- 60	40	- 75	50 -	- 80
Inside diameter of elastomer	(mm)	D _E	10).2	14	.2	1	9.2	26	b.2	29	9.2	36	5.2	46	5.2	60).5	7	79
Diameter of the hub	(mm)	E,	2	5	3	2	4	12	5	6	66	o.5	8	2	1	02	13	6.5	16	60
Diameter of the hub	(mm)	E ₂	1	9	4	0	Ę	55	6	6	8	1	1	10	1	23	1	32	15	57
Distance	(mm)	F	1	5	1	7	2	24	2	8	3	1	3	5	4	15	5	0	6	53
Distance (full disengagement version	n) (mm)	F _F	1	4	1	6	2	22	2	9	3	0	3	5	4	13	5	4	6	J1
Distance	(mm)	G ₁	1	1	Į	ō	8	8.5	1	0	1	1	1	5	1	7.5	2	3	3	36
Distance	(mm)	G ₂	Į	ō	į	ō	7	.5	9	.5	1	1	1	3	1	7	1	8	22	2.5
Distance between centers	(mm)	H	8	3	10	.5	1	15	2	1	2	4	2	9	3	8	50).5	2х	57
Clamping screw (ISO 4762)		1	N	13	N	14	Ν	Л5	N	16	N	18	M	10	M	12	M	16	2x N	M16
Tightening torque of the clamping scr	ew(Nm)	' 1	2	2	4	5		8	1	5	3	5	7	0	1	20	2	90	29	90
Distance between centers D2 side	(mm)	H_2	1	0	1	5	1	19	2	3	2	7	3	19	4	1	4	8	2х	55
Clamping screw (ISO 4762)			N	14	N	14	Ν	Л6	N	18	Μ	10	Μ	12	M	16	2x	V16	2x N	M20
Tightening torque of the clamping scre	ew (Nm)	2	1	1	4	.5	1	15	4	0	7	0	1:	30	2	00	2	50	47	70
Diameter with screwhead	(mm)	K _s	2	5	3	2	4	4.5	5	7	6	8	8	15	1	05	1	39	15	55
Approx. weight	(kg)		0	.2	0	.3	C).6	1	.0	2	.4	5	.8	9	.3	14	1.3	2	26
Moment of inertia (10-	³ kgm ²)	J _{ges}	0.	02	0.	06	0	.25	0	.7	2.	.3	1	1	2	22	33	3.5	18	85
Actuation path	(mm)		0	.8	1	2	1	.5	1	.7	1.	.9	2	.2	2	.2	2	.2	3.	.0

Information about static and dynamic torsional stiffness as well as max. possible misalignment see page 5 $\,$

* Maximum transmittable torque depends on the bore diameter (overall clearance between shaft and hub 0.01 to 0.05 mm; shaft oiled) see page 6

1 Nm = 8.85 in lbs

Mounting instructions

Mounting: Slide the coupling onto the respective shafts to the desired axial position. Using a torque wrench, tighten the clamp screws to the correct tightening torque as indicated in the table.

CAUTION! Both clamping hubs have different screws and different tightening torques.

Dismounting: Simply loosen the clamp screw I1, I2 and remove the safety coupling.

Emergency cut off: Emergency cut off: The axial movement of the actuation ring activates the mechanical switch or proximity sensor.

CAUTION! A 100% test of the function of the cut off switch is necessary.

FUNCTION SYSTEMS ES2

BACKLASH FREE TORQUE LIMITERS

R+W torque limiting couplings are ball detent style overload couplings. They protect drive and driven mechanical components from damage associated with torque overloads.

- Backlash free torque transmission is accomplished by a series of steel balls (4) nested in hardened detents (5).
- Disc springs push against an actuation ring (3) keeping the balls nested.
- The disengagement torque is adjustable by means of a spanner nut (1).
- In the event of an overload, the actuation ring (3) is moved axially by the balls exiting their detents, separating the driving and driven ends.
- The movement of the actuation ring (3) can be sensed by means of a mechanical switch or proximity sensor (6) triggering the drive to shut down.

Disengagement torque setting

On ES 2 couplings, the slot of the clamping hub serves as a reference point (13).

1 adjustment nut 11 locking screw 3 steel actuation ring 12 adjustment range 13 marking

R+W torque limiters are factory set to the customer specified disengagement torque, which is marked on the coupling. The adjustment range (min/max) is also marked on the adjustment nut (1).

The customer can adjust the disengagement torque as long as it is in the range (12) indicated on the adjustment nut.

The adjustment range must not be exited while re-adjusting.

To adjust the disengagement torque, loosen the locking screws (11) and rotate the adjustment ring using a spanner wrench to the desired new setting. Tighten the 3 locking screws (11) and test the coupling.

CAUTION!

R+W torque limiters incorporate disc springs that exhibit a special characteristic. It is important to stay within the operating adjustment range indicated on the adjustment nut.

Single Position / Multi Position

In the case of the standard single position version and the optional multi position version, the spring disengages, allowing the balls to exit their detents, and separating the driving and driven ends of the coupling. A very slight spring pressure remains so that

the balls are able to drop back into their detents and re-engage the torque limiter once the torque is reduced below the set disengagement torque.

Full Disengage

In the case of the optional full disengage version, the spring disengages and completely flips over center, placing zero residual spring pressure on the actuation ring.

disengaged

The driving and driven ends of the coupling are completely separated.

Re-engagement of the coupling is not automatic and must be performed manually (Picture 3a, 3b).

CAUTION:

engaged

The R+W full disengage torque limiting coupling can be re-engaged in six different rotational orientations (every 60°) with only a small axial force (E). Marks on the actuation ring and the body (13) of the coupling must be aligned to indicate a re-engagement point.

For size 60 and up, recesses are included on the torque adjustment nut to support re-engagement with 2 levers (picture 3b). Screwdrivers are an acceptable means by which to perform this re-engagement.

MODEL ESL

LOW BACKLASH TORQUE LIMITERS

"Economy Class"

Properties:

- reliable torque overload protection
- compact simple design
- multi position engagement
- Iow wear
- economical design

Material:

Torque limiter: high strength steel. Detent balls made of hardened steel. Clamping hubs: high strength aluminum. Elastomer insert: precision molded, wear resistant and thermally stable polymer.

Design:

The R+W SERVOMAX elastomer coupling with integral multi position torque limiter.

Speed:

Negligible abrasion with disengagement speeds of up to 200 rpm. Higher speeds upon request.

Tolerance:

Overall clearance between shaft and hub 0.01 to 0.05 $\,\rm mm.$

Model ESL							Ser	ries				
IVIOUEI ESL			Į	5	1	0	2	0	6	0	1	50
Type (Elastomer insert)			А	В	A	В	A	В	A	В	A	В
Rated torque	(Nm)	T _{kn}	9	12	12.5	16	17	21	60	75	160	200
Preset torque range	(Nm)	Nm	1	-6	1-	12	3-	19	5-	60	20-	150
Overall length	(mm)	А	3	4	4	5	6	4	8	0	9	0
Diameter of the hub	(mm)	B ₁	2	5	3	2	4	2	5	6	66	i.5
Diameter of the hub	(mm)	B ₂	2	9	3	2	4	6	5	9	7	5
Fit length	(mm)	C ₁	12	2.5	1	2	2	5	3	0	3	5
Fit length	(mm)	C ₂	11	.5	2	0	2	2	3	1	3	5
Inside diameter range H7	(mm)	D ₁	6-	15	6-	18	8-3	25	12	-32	19	-38
Inside diameter range H7	(mm)	D ₂	6-	10	6-	12	8-	19	12	-24	19	-32
Inside diameter of elastomer	(mm)	D _E	10).5	14	.2	19	9.2	26	o.2	29	0.2
Distance	(mm)	G	ļ	5	6	5	ç	9	1	1	1	2
Distance	(mm)	G ₂	2	.5	3	.5	2	4		1		4
Screews DIN 916		1				dep	ending on bore d	liameter see page	e 12			
Approx. weight	(kg)		0.	05	0.	15	0.	.2	0	.5		1
Moment of inertia	(10 ^{.3} kgm²)	J_1/J_2	0.	01	0.0	02	0.0	08	0.	15	0	.5
Actuation path	(mm)	K	0	.6	1		0.	.6	1	.2	1	.2

Information about static and dynamic torsional stiffness as well as max. possible misalignment see page 5

Installation instruction

* Disengagement torque is preset by R+W, and is not adjustable

All data is subject to change without notice.

FACTORS AND SIZING CALCULATIONS

BACKLASH FREE ELASTOMER COUPLINGS

Temperature factor S_v				А	В	С
Temperature (v)				Sh 98 A	Sh 64 D	Sh 80 A
>	-30°C	to	-10°C	1.5	1.7	1.4
>	-10°C	to	+30°C	1.0	1.0	1.0
>	+30°C	to	+40°C	1.2	1.1	1.3
>	+40°C	to	+60°C	1.4	1.3	1.5
>	+60°C	to	+80°C	1.7	1.5	1.8
>	+80°C	to	+100°C	2.0	1.8	2.1
>	+100°C	to	+120°C	-	2.4	-

Start factor S ₂						
Z _h	up to 120	120 - 240	above 240			
S ₇	1.0	1.3	on request			

Shock and load factor S

Uniform load	S _A = 1.0
Non-uniform load	S_A = 1.8
High dynamics, frequent reversing loads	S_A = 2.5

T _{KN}	=	Rated torque of the coupling	(Nm)
T _{Kmax}	=	Max. torque of the coupling	(Nm)
T	=	Peak torque of the application	(Nm)
T _{AS}	=	Peak torque rating of the driving component	(Nm)
T _{AN}	=	Nominal torque rating of the driving component	(Nm)
T	=	Rated torque of the driven component	(Nm)
P	=	Rated power of the driven component	(KW)
n	=	Speed	(rpm)
J	=	Motor's moment of inertia	(kgm ²)
Ĵ	=	Load inertia (e.g. spindle + slide + work piece)	(kgm ²)
J,	=	Moment of inertia of the coupling half on the driving component	(kgm ²)
J,	=	Moment of inertia of the coupling half on the driven component	(kgm ²)
m	=	Ratio of the moments of inerta driving to driven element	
υ	=	Temperature of the area around the coupling	
		(observe radiant heat)	
S.	=	Temperature factor	
S,	=	Shock or load factor	
S _ບ S _A S ₇	=	Start factor (factor for the number of starts/hour)	
Z _h	=	Duty cycle	(1/h)

Sizing of a Servomax® Elastomer Coupling

1. Calculation example without shock or reversing loads

The rated torque of the coupling $(\mathbf{T}_{_{KN}})$ needs to be higher than the rated torque of the driven element $(\mathbf{T}_{_{LN}})$ times the temperature factor \mathbf{S}_v at the coupling for the application. If \mathbf{T}_{IN} is not known, \mathbf{T}_{AN} can be used for the calculation instead.

Condition: $T_{KN} > T_{LN} \times S_{v}$	Auxiliary calculation:	$\mathbf{T}_{\text{LN}} = \frac{9550 \text{ x } \mathbf{P}_{\text{LN}}}{\mathbf{n}}$
Calculation example: (No loads and shocks) Driving component T _{AN} = 119 Nm	$\begin{array}{l} \underline{Coupling\ conditons:}\\ \upsilon &= \textbf{70}^{\circ} \text{ C}\\ \textbf{S}_{\upsilon} &= 1.7\ (\text{for 70}^{\circ}/\text{Type A}) \end{array}$	$\frac{\text{Driven component}}{T_{LN}} = 85 \text{ Nm}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	<u>Result:</u> A coupling type EK 2/ [*]	150/A (T _{KN} = 160 Nm) is selected.

2. Calculation example with shock loads

In all cases the maximum rated torque (T_{Kmax}). of the coupling can not be exceeded. First calculate the rated torque (T_{KN}) of the coupling same as above. Compare this result to the peak torque (T_o) times the start factor (S_o) times the temperature factor (S_o) for the application. The greater of the two values must be less than (TKmax) of the coupling.

MODEL ATEX

FOR USE IN HAZARDOUS AREAS AND EXPLOSIVE ATMOSPHERE

ATEX 95a is regulated by the new European directive. Generally the explosive atmosphere is classified in 3 different zones.

Zone 0:

A place in which an explosive atmosphere consists out of a mixture of air and flammable substances in the form of gas, vapor or mist, and **is present frequently, continuously** or for **extended periods**.

Zone 20:

Is relevant for an explosive atmosphere in the form of clouds of combustible dust in air under the same conditions as above.

Zone 1:

Described as a place in which an explosive atmosphere consists of a mixture of air and flammable substances in the form of gas, vapor or mist, and is **likely to occur** in normal operation occasionally.

Zone 21:

Is relevant for an explosive atmosphere in the form of clouds of combustible dust in air under the same conditions as above.

Zone 2:

A place in which an explosive atmosphere consists out of mixtureof air with flammable substances in the form of gas, vapor or mist, and is **not likely to occur** in normal operation but, if it does occur, it will persist **for a short period only**.

Zone 22:

Relevant for an explosive atmosphere in the form of a cloud of combustible dust in air under the same conditions as above.

For the classified zones 1/21 and 2/22 the Servomax couplings EK-EEx do have an accreditation according to ATEX 95/a

R+W solutions with standard components

All standard hubs and elastomer inserts are interchangeable within the same size.

Non standard hubs for larger bores

Non-standard hubs with flange

Intermediate piece for higher lateral misalignment AT mosphere FX plosible

Design of the Servomax EEx:

No dimensional change from the EK standard series, only the material of the inserts will change.

Elastomer insert:

A special elastomer insert **Type D (Sh65D)** with electrically conductive properties is used, preventing the possibility of electrostatic loading, and preventing electric current from making an arc across the hubs.

Sizing:

All misalignment and torque ratings must be reduced by 30%. Technical data is available upon request.

Maintanance:

A routine inspection of the coupling must be performed.

Mounting manuals:

Mounting and maintanance manuals are provided with every EEx coupling.

Adapter flange for planetery gearboxes acc. to ISO 9409

Experience and Know-how for your special requirements.

THE R+W-PRODUCT RANGE

TORQUE LIMITERS Series SK + ST

From 0.1 – 160,000 Nm, Bore diameters 3 – 290 mm Available as a single position, multi-position, load holding, or full disengagement version Single piece or press fit design

BELLOWS COUPLINGS Series BK

From 2 – 10,000 Nm Bore diameters 10 – 180 mm Single piece or press fit design

LINE SHAFTS Series ZA / ZAE / EZ / EZV

From 10 – 25,000 Nm Bore diameters 5 – 140 mm Available up to 6 mtr. length

MINIATURE BELLOWS COUPLINGS Series MK

From 0.05 – 10 Nm Bore diameters 1 – 28 mm Single piece or press fit design

SERVOMAX® ELASTOMER COUPLINGS Series EK

From 2 – 25,000 Nm Shaft diameters 3 – 170 mm backlash free, press fit design

ELASTOMER COUPLINGS Series TX 1 From 2 – 810 Nm

ECOLIGHT®

Shaft diameters 3 – 45 mm

LINEAR COUPLINGS Series LK

From 70 – 2,000 N Thread M5 – M16

POLYAMIDE COUPLINGS MICROFLEX Series FK 1

Rated torque 1 Ncm Bore diameters 1 – 1.5 mm A055/12/10/1.000

R+W America 1120 Tower Lane Bensenville, IL 60106

Phone: 630-521-9911 Fax: 630-521-0366

info@rw-america.com www.rw-america.com

TGA-ZM-05-91-00 Registration No. 40503432/2

The information mentioned in this document is based on our present knowledge and experiences and does not exclude the manufacturers own substantial testing of the equipment. So this is no obligatry assurance even with regard to protection rights of Third Parties. The sale of our products is subject to our General Conditions of Sale and Delivery.